Exercise performed immediately after fructose ingestion enhances fructose oxidation and suppresses fructose storage

Léonie Egli,2 Virgile Lecoultre,2 Jérémy Cros,2 Robin Rosset,2 Anne-Sophie Marques,2 Philippe Schneider,2 Leanne Hodson,3 Laure Gabert,4,5 Martine Laville,4,5 and Luc Tappy2*

2Department of Physiology, University of Lausanne, Lausanne, Switzerland; 3Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom; and 4Centre for Research in Human Nutrition Rhoènes-Alpes and 5European Centre of Nutrition for Health, Lyon 1 University, Lyon, France

ABSTRACT

Background: Exercise prevents the adverse effects of a high-fructose diet through mechanisms that remain unknown.

Objective: We assessed the hypothesis that exercise prevents fructose-induced increases in very-low-density lipoprotein (VLDL) triglycerides by decreasing the fructose conversion into glucose and VLDL-triglyceride and fructose carbon storage into hepatic glycogen and lipids.

Design: Eight healthy men were studied on 3 occasions after 4 d consuming a weight-maintenance, high-fructose diet. On the fifth day, the men ingested an oral 13C-labeled fructose load (0.75 g/kg), and their total fructose oxidation (%CO2 production), fructose storage (fructose ingestion minus 13C-fructose oxidation), fructose conversion into blood 13C glucose, VLDL-13C palmitate (a marker of hepatic de novo lipogenesis), and lactate concentrations were monitored over 7 postprandial h. On one occasion, participants remained lying down throughout the experiment [fructose treatment alone with no exercise condition (NoEx)], and on the other 2 occasions, they performed a 60-min exercise either 75 min before fructose ingestion [exercise, then exercise condition (ExFru)] or 90 min after fructose ingestion [fructose, then exercise condition (FruEx)].

Results: Fructose oxidation was significantly (% < 0.001) higher in the FruEx (80% ± 3% of ingested fructose) than in the ExFru (46% ± 1%) and NoEx (49% ± 1%). Consequently, fructose storage was lower in the FruEx than in the other 2 conditions (% < 0.001). Fructose conversion into blood 13C glucose, VLDL-13C palmitate, and postprandial plasma lactate concentrations was not significantly different between conditions.

Conclusions: Compared with sedentary conditions, exercise performed immediately after fructose ingestion increases fructose oxidation and decreases fructose storage. In contrast, exercise performed before fructose ingestion does not significantly alter fructose oxidation and storage. In both conditions, exercise did not abolish fructose conversion into glucose or its incorporation into VLDL triglycerides. This trial was registered at clinicaltrials.gov as NCT01866215. Am J Clin Nutr 2016;103:348–55.

Keywords: de novo lipogenesis, energy output, fructose, gluconeogenesis, lactic acid

INTRODUCTION

It has been proposed that dietary fructose may play a causal role in the development of obesity, diabetes, and cardiovascular diseases. The consumption of a diet rich in fructose or fructose-containing caloric sweeteners causes hepatic insulin resistance (1, 2), stimulates hepatic de novo lipogenesis (3), increases blood triglyceride concentrations (4), and promotes liver-fat deposition (5) in humans. There is currently much concern that these alterations may contribute to the development of insulin resistance and nonalcoholic liver disease in the long term.

An increase in physical activity has been shown to efficiently improve metabolic homeostasis and reduce cardiovascular disease risk in patients with the metabolic syndrome as well as in healthy participants (6–8). Several studies have specifically reported that an increase in physical activity also prevented fructose-induced metabolic alterations (9, 10) possibly by altering the metabolic fate of fructose ingested before or while exercising.

The disposal of ingested fructose carbons is mainly partitioned into lactic acid production, fructose conversion into plasma glucose and hepatic glycogen, and lipid synthesis (11, 12). Because lactic acid production is more energy efficient than fructose conversion into glucose and glycogen is and much-more efficient than lipid synthesis is (13), we have proposed that fructose conversion into glucose and fat would occur mainly when lactic acid production is saturated (14). Therefore, in this study, we assessed the hypothesis that exercise may prevent a fructose-induced rise in VLDL triglycerides (VLDL-TGs) by decreasing fructose conversion into glucose and VLDL-TGs and fructose carbon storage into hepatic glycogen and lipids.

To evaluate this hypothesis, we assessed how a single exercise session altered the metabolic fate of a pure fructose load in

1Supported by the Swiss National Science Foundation (grants 32003B_156167 and 320030_138428; to LT).
2To whom correspondence should be addressed. E-mail: luc.tappy@unil.ch.
3Abbreviations used: ExFru, exercise, then exercise condition; FruEx, fructose, then exercise condition; NEFA, nonesterified fatty acid; NoEx, fructose treatment alone with no exercise condition; VLDL-TG, VLDL triglyceride.

Received July 8, 2015. Accepted for publication October 14, 2015.
First published online December 23, 2015; doi: 10.3945/ajcn.115.116988.
a group of healthy nonobese subjects. Because exercise is expected to differentially affect endogenous glycogen and blood glucose use when performed in the fasting state or after ingestion of a meal (15, 16), we monitored the fate of an acute 13C-fructose load ingested either immediately before or immediately after a standardized exercise (Figure 1). We specifically assessed the partitioning of fructose carbons into oxidation and storage by monitoring breath 13CO$_2$ production and the conversion of fructose carbon into blood glucose by monitoring total 13C glucose appearance with intravenous deuterated glucose. We also assessed the effects of exercise on blood lactate and VLDL-13C palmitate concentrations as potential clues to exercise-induced alterations of hepatic lactate production from fructose and de novo lipogenesis, respectively.

METHODS

Subjects

Eight sedentary male volunteers [mean ± SD age: 22.5 ± 2.2 y; mean ± SD BMI (in kg/m2): 22.8 ± 0.8] participated in the study. The subjects were in good health, nonsmokers, and not presently taking any medications and had no history of diabetes in their first-degree relatives. The study protocol was approved by the Human Research Ethics Committee of Canton de Vaud, and the participants provided informed written consent. The procedures were conducted in accordance with the Helsinki Declaration of 1975 as revised in 1983. This trial was registered at clinicaltrials.gov as NCT01866215.

Study design

Participants were studied on 3 occasions with fructose ingested on one occasion in sedentary conditions (i.e., without exercise [fructose treatment alone with no exercise condition (NoEx)]) or on the other occasions with an exercise bout performed immediately before fructose ingestion (exercise, then fructose condition (ExFru)) or after fructose ingestion [fructose, then exercise condition (FruEx)] in a randomized order. On each occasion, subjects received a controlled, high-fructose, weight-maintenance diet that contained 55% carbohydrate (30% fructose, 20% starch, and 5% nonfructose sugars), 30% lipids, and 15% proteins during the 4 d before each experiment. Dietary intake was calculated for each participant according to the Harris-Benedict equation (17) and a physical activity factor of 1.5. Diets were provided as prepacked food items and drinks. Fructose was provided as lemon-flavored drinks. Volunteers received instructions to consume all the foods and beverages that they received at specified times and to not consume any other foods or beverages except water. Subjects were also requested to refrain from physical activity during these 4 d.

On the fifth day, subjects underwent one of 3 experimental tests (Figure 2). For this purpose, they reported to the Clinical Research Center of Lausanne University Hospital at 0700 after a 12-h overnight fast. On arrival, subjects were weighed (Seca 708; Seca GmbH), and their body compositions were measured with the use of a bioelectrical impedance analysis (Imp DF50; ImpediMed). Participants were transferred to a bed, and a cannula was inserted into a vein of the right forearm for blood sampling.

FIGURE 1 Overview of major pathways used for fructose metabolism. Fructose absorbed from the gut (solid black arrow) is mainly extracted by hepatic cells expressing fructokinase and aldolase B (i.e., hepatocytes, intestinal cells, and proximal renal tubule cells) where it is converted into lactate, glucose, and fatty acids. These metabolites are ubiquitous energy substrates that can be released into the bloodstream to be either oxidized or stored as glycogen or triglycerides in all cells of the organism. Because of the complexity of its metabolism, no single tracer method accurately assesses all pathways of fructose disposal. When a 13C-labeled fructose load is administered, breath 13CO$_2$ production provides an estimate of total fructose oxidation (direct oxidation of trioses-phosphate formed from fructose in the liver (not shown) and extrapathic oxidation of lactate, glucose, and fatty acids synthesized from fructose). With the assumption that all 13C-labeled fructose is completely absorbed during the experiment, (fructose ingested) – (fructose oxidized) represents fructose storage as intracellular triglycerides or glycogen. The measurement of net carbohydrate oxidation with the use of indirect calorimetry does not differentiate the oxidation of glycogen, glucose, lactate, or fructose because all these substrates have the same respiratory quotient, and it provides an estimate of the sum of their net oxidations. Note that standard indirect calorimetry equations compute the oxidation of glucose synthesized from amino acids as being part of net protein oxidation and not of net carbohydrate oxidation. The immediate oxidation of VLDL-TG synthesized from fructose can be assumed to be small, and thus was neglected. When a pure fructose load is ingested, [net carbohydrate oxidation (indirect calorimetry)] – [fructose oxidation (13CO$_2$)] corresponds to the oxidation of endogenous glycogen (i.e., glycogen breakdown), and the rate of 13C-glucose appearance in blood (measured with intravenous tracer infusion of deuterated glucose) corresponds to the release of fructose carbons as glucose in the systemic circulation. ox., oxidized; TG, triglycerides; TRL, triglyceride-rich lipoproteins.
A second cannula was inserted into a vein of the left forearm for tracer infusion. A primed, continuous infusion of [6,6-2H2]-glucose (Cambridge Isotope Laboratories) (bolus: 3 mg/kg body weight; continuous infusion: 30 μg · kg⁻¹ · min⁻¹) was administered throughout the test. Blood samples were collected at baseline (T = 0) and after 60, 120, 180, 240, 300, 360, 420, 480, and 540 min for the measurement of plasma substrate concentrations and isotopic enrichments. Energy expenditure and substrate oxidation were measured with the use of indirect calorimetry (Quark RMR; Cosmed Srl). An oral fructose load (0.75 g/kg body weight; D-Fructose, Fluka Analytic; Sigma Aldrich) that was enriched with 0.1% [U-13C6]-fructose (Cambridge Isotope Laboratories) was given at time 120 min. Breath samples were collected every 60 min to measure breath 13CO2 enrichment. A timed urine collection was performed throughout the test to determine urinary nitrogen excretion.

Each volunteer was studied during 3 experimental conditions according to a randomized order. The sequence of conditions was determined with the use of computer-generated random numbers (R software, version 3.0.2; CRAN). A 4-wk washout period separated the following 3 experimental conditions.

1) No exercise (NoEx): the participant remained installed in bed over the 9 h of the metabolic test and received a fructose load at time 120 min.
2) Exercise before fructose ingestion (ExFru): the subject cycled during 1 h at 100 W starting at time 45 min and received a fructose load at time 120 min while remaining in bed the rest of the time. The cycling exercise was performed on an ergometer (Ergoline GmbH). During exercise, oxygen uptake and carbon dioxide production were measured breath by breath (SensorMedicsVmax; Sensormedics Corp.) during 5 min every 20 min. Blood and breath samples were also collected 20, 40, and 60 min after the beginning of the exercise session.
3) Exercise after fructose ingestion (FruEx): the participant received a fructose load at time 120 min and performed 1 h of cycling exercise at 100 W starting at time 210 min. To account for the exercise-induced increase in glucose fluxes, the 6,6-2H2-glucose infusion rate was increased to 75 μg · kg⁻¹ · min⁻¹ at the beginning of exercise and was reduced to 30 μg · kg⁻¹ · min⁻¹ at the end of exercise.

Analytic procedures

Plasma glucose, lactate, nonesterified fatty acids (NEFAs), triglycerides, and urinary urea were measured with the use of enzymatic methods (Randox Laboratories). Insulin and glucagon were measured with the use of a radioimmunoassay (Millipore). The VLDL subfraction was separated by ultracentrifugation as previously described (18). VLDL concentrations were measured with the use of an enzymatic method (Randox Laboratories).

For the plasma glucose isotopic analysis, plasma was deproteinized with the use of barium hydroxide, neutral compounds were isolated by passing the supernatant over anion- and cation-exchange resins, and glucose penta-acetyl derivatives were obtained by adding acetic anhydride and pyridine. Plasma 6,6-2H2 isotopic enrichment was measured with the use of gas chromatography–mass spectrometry (Agilent Technologies). Plasma 13C glucose isotopic enrichment was measured with the use of gas chromatography–combustion–isotope ratio mass

![FIGURE 2](image)

FIGURE 2 Experimental design of day 5 for each condition. In the NoEx, the participant remained in bed over the 9 h of the metabolic test and received a fructose load enriched with 0.1% [U-13C6]-fructose, which was given at time (T) = 120 min (striped arrow). Blood and breath samples (black arrows) were collected at baseline (T = 0) and after 60, 120, 180, 240, 300, 360, 420, 480, and 540 min for measurements of plasma substrate concentrations and isotopic enrichments as well as measurements of breath 13CO2 enrichment. [6,6-2H2]-glucose (bolus: 3 mg/kg body weight; continuous infusion: 30 μg · kg⁻¹ · min⁻¹) was infused throughout the test. In the ExFru, the subject cycled during 1 h at 100 W starting at T = 45 min and received a fructose load at T = 120 min while remaining in bed the rest of the time. White bars represent the time when the volunteers were resting, and gray bars represent the exercise sessions. Blood and breath samples were also collected 20, 40, and 60 min after the beginning of the exercise session. The [6,6-2H2]-glucose infusion rate was increased to 75 μg · kg⁻¹ · D⁻¹ during exercise. In the FruEx, 1 h of cycling exercise at 100 W was performed starting at T = 210 min. The 3 experimental conditions were followed in a randomized order: Ex, 60-min exercise; ExFru: exercise, then fructose condition; FruEx, fructose, then exercise condition; NoEx, fructose treatment alone with no exercise condition.
TABLE 1
Anthropometric variables and fasting metabolic substrates and hormones

<table>
<thead>
<tr>
<th>Variable</th>
<th>NoEx</th>
<th>ExFru</th>
<th>FruEx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body mass, kg</td>
<td>71.9 ± 5.3</td>
<td>71.1 ± 4.8</td>
<td>72.3 ± 4.9</td>
</tr>
<tr>
<td>Fat mass, kg</td>
<td>13.4 ± 3.5</td>
<td>13.1 ± 4.0</td>
<td>13.7 ± 3.6</td>
</tr>
<tr>
<td>Systolic blood pressure, mm Hg</td>
<td>118 ± 6</td>
<td>120 ± 8</td>
<td>119 ± 6</td>
</tr>
<tr>
<td>Diastolic blood pressure, mm Hg</td>
<td>69 ± 4</td>
<td>70 ± 4</td>
<td>70 ± 5</td>
</tr>
<tr>
<td>Glucose, mmol/L</td>
<td>4.89 ± 0.38</td>
<td>4.92 ± 0.37</td>
<td>4.89 ± 0.41</td>
</tr>
<tr>
<td>Lactate, mmol/L</td>
<td>0.84 ± 0.36</td>
<td>0.80 ± 0.17</td>
<td>0.84 ± 0.32</td>
</tr>
<tr>
<td>Insulin, mU/mL</td>
<td>7.50 ± 2.12</td>
<td>8.00 ± 3.42</td>
<td>7.89 ± 3.04</td>
</tr>
<tr>
<td>Glucagon, pg/mL</td>
<td>67.5 ± 32.2</td>
<td>69.7 ± 38.4</td>
<td>68.0 ± 24.9</td>
</tr>
<tr>
<td>Triglycerides, mmol/L</td>
<td>1.01 ± 0.42</td>
<td>0.87 ± 0.25</td>
<td>1.07 ± 0.5</td>
</tr>
<tr>
<td>VLDL-TGs, mmol/L</td>
<td>0.33 ± 0.12</td>
<td>0.29 ± 0.09</td>
<td>0.34 ± 0.13</td>
</tr>
<tr>
<td>NEFAs, mmol/L</td>
<td>0.40 ± 0.11</td>
<td>0.41 ± 0.09</td>
<td>0.46 ± 0.15</td>
</tr>
</tbody>
</table>

1All values are means ± SDs (n = 8 participants in each analysis; analyzed by original assigned groups). The normality of the distribution was inspected visually and checked with the use of Shapiro-Wilk tests. Skewed distributions (lactate) were log transformed before the statistical analysis. Changes in anthropometric variables and fasting metabolic variables at T = 0 min of each condition were assessed by Student’s paired t tests with Bonferroni corrections for multiple testing. P < 0.05 was considered significant. Participants showed no significant difference in anthropometric variables and fasting metabolic substrates and hormones between the 3 tests performed. All P values were NS, ExFru, exercise; then fructose condition; FruEx, fructose; then exercise condition; NEFAs, nonesterified fatty acids; NoEx, fructose treatment alone with no exercise condition; VLDL-TG, VLDL triglyceride.

spectrometry (Isoprime; Isoprime Ltd.) at the Centre for Research in Human Nutrition Rhône-Alpes.

Breath 13CO2 enrichment was measured by isotope-ratio mass spectrometry (Sercon Ltd.). 13C-palmitate enrichment and concentrations in VLDL were measured after total lipid extractions from plasma and the preparation of fatty acid methyl esters from triglyceride fractions. The palmitate 13C:12C ratio in fatty acid methyl ester derivatives was determined with the use of Delta Plus XP GC-combustion isotope ratio mass spectrometry (Thermo Electron Corporation, Bremen, Germany). VLDL-TG palmitate content (percentage of weight) was measured by GC-isotope-ratio mass spectrometry (Thermo Electron, Bremen, Germany) as reported previously (9).

Calculations

Plasma concentrations of VLDL 13C palmitate (nmol/L) were calculated as

\[
\text{[VLDL-TG-13C-palmitate \text{ isotopic enrichment (atom percent excess)]} = \text{weight \% palmitate} \times \text{[VLDL-TG (nmol/L)]}
\]

Fructose conversion into plasma glucose was calculated as

\[
\text{EGP} \times \{(^{13}CG_1 + ^{13}CG_2)/2 + pV \times [(G_1 + G_2)/2 + ^{13}CG_2-^{13}CG_1]/(t_2-t_1)\} \times ^{13}CF
\]

where EGP is the endogenous glucose production (g · kg⁻¹ · h⁻¹) calculated with [6,6-²H₂]-glucose and Steele’s equations for non–steady state conditions (19), 13CG is the isotopic enrichment of plasma glucose (atom percent excess), G is the glucose concentration (g/L), 13CF is the isotopic enrichment of oral fructose, p is the pool fraction (set at 0.75), V is the glucose distribution space (set at 0.2 L/kg body weight), and t is the time (h).

Total fructose oxidation (g/min) was calculated as

\[
\text{Fructose IE} = \frac{\text{CO}_2 \text{ IE} \times \text{VCO}_2}{0.134 \times 180 \times 10^6}
\]

where CO₂ IE is the isotopic enrichment of breath carbon dioxide, and fructose IE is the isotopic enrichment of the oral fructose load, both of which are expressed as the atom percent excess, 0.8 is the recovery of 1³C from fructose in breath carbon dioxide, V CO₂ is the total respiratory carbon dioxide (mL/min), 0.134 is the volume of carbon dioxide (mL) produced by the oxidation of 1 µmol fructose, 180 is the molar weight of fructose, and 10⁶ allows for the conversion from micrograms to grams.

When cumulated over a 7-h postprandial period, the absorption of ingested fructose can be assumed to be essentially complete, although a few grams may be malabsorbed (20). In such conditions, the amount of fructose ingested minus fructose oxidation represents the sum of fructose carbons retained in the body as glycogen and fat (i.e., fructose storage).

The net carbohydrate oxidation calculated with the use of indirect calorimetry (21) includes the conversion of fructose (or glucose) into fat as long as the fat synthesis does not exceed fat oxidation (i.e., nonnet fat synthesis) (22). With the ingestion of pure fructose (i.e., with no exogenous carbohydrate other than fructose), the difference between the amount of fructose ingested and the cumulated net carbohydrate oxidation represents exclusively the net storage of hepatic and muscle glycogen. The net glycogen storage between times 120 and 540 was calculated as

\[
\text{Fructose ingested} - \text{net carbohydrate oxidation}
\]

Glycogen breakdown between times 120 and 540 was calculated as

\[
\text{(Net carbohydrate oxidation)} - (^{13}C \text{ fructose oxidation})
\]

Statistical analysis

Anthropometric variables are expressed as means ± SDs, whereas all other values are expressed as means ± SEMs. The normality of the distribution was inspected visually and checked with the use of Shapiro-Wilk tests. When necessary, skewed distributions (baseline lactate) were log transformed before statistical analyses.

Changes in anthropometric variables and fasting metabolic variables at T = 0 min of each condition were assessed with the use of Student’s paired t tests with Bonferroni corrections for multiple testing. Metabolic effects of the conditions (NoEx, ExFru, and FruEx) were evaluated by the calculation of incremental AUCs either over 9 or 7 h after fructose consumption and compared with the use of Student’s paired t tests with Bonferroni correction for multiple testing. All statistical calculations were performed with R software (version 3.0.2). P < 0.05 was considered statistically significant.

RESULTS

All participants were recruited and completed the 3 experimental conditions between July 2012 and June 2013. One
participant who was initially included had to stop the exercise session (because of faintness) and was removed from the analysis and replaced to reach the number of 8 completed participants that were needed on the basis of the sample size calculation. No other harms or unintended effects were reported by participants or observed by investigators during the metabolic tests.

Anthropometric variables and fasting metabolic variables

Participants showed no significant differences in body weight, body fat mass, or blood pressure between the 3 experimental conditions (Table 1). Their fasting plasma metabolite and hormone concentrations were also not significantly different (Table 1).

Metabolic effects of fructose without exercise (NoEx)

Fructose ingestion in subjects remaining awake and lying in their bed (NoEx) induced a slight increase in blood glucose and insulin, a marked increase in blood lactate, and a marked suppression of NEFA (Figure 3). Estimated pathways used for oral fructose disposal, total energy expenditure, and net substrate oxidation, cumulated over 2-h basal and over 7 h postprandial are shown in Table 2. Postprandial oxidation of exogenous fructose corresponded to 49.3 ± 0.9%, total fructose storage to 50.7 ± 0.9%, net glycogen storage to 25.3 ± 5.6%, and fructose conversion into plasma glucose to 15.5 ± 0.7% of the ingested load (Table 2). Blood 13C-palmitate enrichment and 13C palmitate concentrations in VLDL increased progressively from time 120 to reach a peak at time 300, and declined slowly thereafter (Figure 4).

Effects of exercise performed before fructose ingestion (ExFru)

In the ExFru, total energy expenditure and net carbohydrate oxidation ($P < 0.001$ compared with NoEx; Table 2) were significantly higher than in the NoEx during the preprandial 2-h period during which exercise was performed. Glycogen breakdown during this period amounted to 139.0 ± 6.0 g over 2 h (data not shown). Thereafter, the ingestion of the fructose load elicited plasma glucose and lactate responses that did not significantly differ from those in the NoEx (all $P = NS$ compared with NoEx; Figure 3). In contrast, plasma insulin concentrations tended to be lower ($P = 0.06$ compared with NoEx; Figure 3), and plasma NEFA concentrations were significantly lower ($P < 0.01$ compared with NoEx; Figure 3). Fructose oxidation (45.7 ± 1.2%), fructose storage (54.3 ± 1.2%), net glycogen storage (41.3 ± 4.5% of the fructose load), and glycogen breakdown that were cumulated over 7 h postprandial, did not show any significant difference compared with in the NoEx (all $P = NS$; Table 2).

Postprandial total plasma triglyceride concentrations were not significantly altered ($P = NS$ compared with NoEx), but VLDL-TG concentrations were lower ($P < 0.05$ compared with NoEx). AUCs for VLDL-13C palmitate enrichment and concentrations were not significantly different from those in the NoEx (Figure 4).

FIGURE 3 Mean ± SEM glucose, insulin, lactate, and NEFA concentrations and postprandial AUCs. $n = 8$ participants in each analysis; analyzed by original assigned groups. The normality of the distribution was inspected visually and checked with the use of Shapiro-Wilk tests. All data were normally distributed. Metabolic effects of the conditions (NoEx, FruEx, and ExFru) were evaluated by the calculation of the iAUC over 7 h after fructose consumption and compared with the use of Student’s paired t test, with Bonferroni corrections for multiple testing. $P < 0.05$ was considered significant. In the ExFru, insulin tended to be lower ($P = 0.06$ compared with NoEx). *$P < 0.05$ compared with NoEx; **$P < 0.01$ compared with NoEx; ***$P < 0.01$ compared with ExFru. ExFru, exercise, then fructose condition; FruEx, fructose, then exercise condition; iAUC, incremental AUC; NEFA, nonesterified fatty acids; NoEx, fructose treatment alone with no exercise condition.
TABLE 2
Estimated pathways used for oral fructose disposal, total energy expenditure, and net substrate oxidation

<table>
<thead>
<tr>
<th>Period AUC, min</th>
<th>NoEx</th>
<th>ExFru</th>
<th>FruEx</th>
<th>NoEx vs. ExFru</th>
<th>NoEx vs. FruEx</th>
<th>ExFru vs. FruEx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fructose oxidation, g over 7 h</td>
<td>120–540</td>
<td>26.6 ± 1.0</td>
<td>24.4 ± 1.0</td>
<td>43.5 ± 1.9</td>
<td>0.053</td>
<td><0.001</td>
</tr>
<tr>
<td>Fructose storage, g over 7 h</td>
<td>120–540</td>
<td>27.3 ± 0.6</td>
<td>28.9 ± 0.8</td>
<td>10.7 ± 1.4</td>
<td>0.25</td>
<td><0.001</td>
</tr>
<tr>
<td>Net glycogen storage, g over 7 h</td>
<td>120–540</td>
<td>13.5 ± 2.9</td>
<td>22.3 ± 2.7</td>
<td>−116.7 ± 5.8</td>
<td>0.24</td>
<td><0.001</td>
</tr>
<tr>
<td>Glycogen breakdown, g over 7 h</td>
<td>120–540</td>
<td>13.8 ± 3.0</td>
<td>6.6 ± 2.2</td>
<td>127.4 ± 5.1</td>
<td>0.32</td>
<td><0.001</td>
</tr>
<tr>
<td>Fructose conversion into plasma glucose, g over 7 h</td>
<td>120–540</td>
<td>8.4 ± 0.5</td>
<td>8.4 ± 0.4</td>
<td>8.6 ± 0.7</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Energy expenditure, kcal</td>
<td>0–120</td>
<td>141 ± 5.2</td>
<td>635.3 ± 12.1</td>
<td>152.3 ± 6.9</td>
<td><0.001</td>
<td>0.21</td>
</tr>
<tr>
<td>over 2, 7, or 9 h</td>
<td>120–540</td>
<td>537.0 ± 16.2</td>
<td>528.6 ± 20.4</td>
<td>1034.8 ± 29.9</td>
<td>1.00</td>
<td><0.001</td>
</tr>
<tr>
<td>CHOx, g over 2, 7, or 9 h</td>
<td>0–120</td>
<td>9.3 ± 0.9</td>
<td>139 ± 6</td>
<td>7.7 ± 1.6</td>
<td><0.001</td>
<td>0.81</td>
</tr>
<tr>
<td></td>
<td>120–540</td>
<td>40.4 ± 3.5</td>
<td>31 ± 1.9</td>
<td>170.9 ± 6.4</td>
<td>0.20</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>0–540</td>
<td>49.8 ± 4.2</td>
<td>170 ± 6.0</td>
<td>178.6 ± 7.5</td>
<td><0.001</td>
<td><0.001</td>
</tr>
</tbody>
</table>

1All values are means ± SEMs (n = 8 participants in each analysis; analyzed by original assigned groups). The normality of the distribution was inspected visually and checked with the use of Shapiro-Wilk tests. All data were normally distributed. Metabolic effects of the conditions (NoEx, FruEx, and ExFru) were evaluated by the calculation of incremental AUCs over 120 min (after fructose load), 420 min (after fructose load), or 540 min (overall) and comparison with the use of Student’s paired t tests with Bonferroni corrections for multiple testing. P < 0.05 was considered significant. CHOx, carbohydrate oxidation; ExFru, exercise, then fructose condition; FruEx, fructose, then exercise condition; NoEx, fructose treatment alone with no exercise condition.

Effects of exercise performed after fructose ingestion (FruEx)

In the FruEx, there were no significant differences in plasma insulin, lactate, and triglyceride concentrations compared with those in the NoEx and ExFru except for a lower plasma glucose concentration over the 7 h after fructose ingestion (P = 0.038 compared with NoEx’ Figures 3 and 4). Exercise performed 90 min after fructose ingestion significantly increased the total energy expenditure and net carbohydrate oxidation (both P < 0.001 compared with NoEx; Table 2) to values similar to those observed in the ExFru, whereas lipid oxidation remained comparable to that in the NoEx and ExFru (data not shown). Postprandial fructose oxidation (80.2 ± 2.6% of the fructose load) was nearly doubled compared with the NoEx and ExFru (both P < 0.001), and glycogen breakdown was higher than in the NoEx and ExFru (P < 0.001). Fructose storage (19.8 ± 2.6% of the fructose load) and net glycogen storage were both lower than in the NoEx and ExFru (all P < 0.001; Table 2).

The AUC of VLDL-13C palmitate enrichment was significantly reduced compared with in the NoEx (P = 0.039 compared with NoEx; Figure 4). In contrast, AUCs for VLDL-13C-palmitate concentrations were not significantly different from those in the NoEx (Figure 4).

DISCUSSION

To our knowledge, this study allowed us to obtain novel original data regarding the effects of exercise on the fructose metabolic pathways used for its postprandial metabolism.

When fructose was administered in resting conditions, 49% of the exogenous load was oxidized over 7 h postprandial. The amount of newly synthesized, labeled glucose released in the systemic circulation during this time corresponded to 15% of the original load and net glycogen storage was both lower than in the NoEx and ExFru (all P < 0.001; Figures 3 and 4). Exercise performed 90 min after fructose ingestion had substantial effects on postprandial fructose metabolism. It increased the total energy expenditure and net carbohydrate oxidation to the same extent as with the ExFru and resulted in a global glycogen deficit of 146 g over the total 9 h. Labeled fructose carbons were nonetheless recovered as VLDL palmitate, which indicated that de novo lipogenesis remained active and, hence, that fructose carbons were not exclusively channeled toward glycogen storage.

In contrast, exercise performed immediately after fructose ingestion had substantial effects on postprandial fructose metabolism. It increased the total energy expenditure and net carbohydrate oxidation to the same extent as with the ExFru and resulted in the same total energy and glycogen deficits. However, it markedly enhanced fructose oxidation and decreased fructose and net glycogen storage. Despite this preferential fructose oxidation, the fructose conversion into blood glucose was unchanged, and fat synthesis was still active, as documented by the ongoing incorporation of labeled carbons in VLDL palmitate.

BLOOD lactate, insulin, and triglyceride concentrations were hardly altered compared with in the other 2 conditions.

Our current data support our postulation that exercising after fructose ingestion increases fructose conversion into lactic acid followed by its oxidation in the working muscle. This process has previously been shown with the use of 13C-labeled tracers in simultaneous breakdown and oxidation of unlabeled glycogen, 2) storage of fructose as fat, or 3) incomplete gut absorption of oral fructose. The appearance of 13C carbons in VLDL palmitate unequivocally indicated that hepatic de novo lipogenesis from fructose occurred. However, a quantitative estimate of hepatic fat synthesis was not possible. Therefore, we conclude that hepatic de novo lipogenesis was active after fructose ingestion. However, the total amount of fat synthesis was likely to be small.

When exercise was performed before fructose ingestion, postprandial fructose oxidation tended to be lower, whereas fructose storage was not significantly different from that in sedentary conditions (i.e., without exercise). Cumulative energy expenditure was largely superior to the energy content of the fructose meal, resulting in an energy deficit of 950 kcal. As a consequence, glycogen utilization during exercise was not fully compensated by glycogen storage after fructose ingestion, which resulted in a global glycogen deficit of 146 g over the total 9 h. Labeled fructose carbons were nonetheless recovered as VLDL palmitate, which indicated that de novo lipogenesis remained active and, hence, that fructose carbons were not exclusively channeled toward glycogen storage.

In contrast, exercise performed immediately after fructose ingestion had substantial effects on postprandial fructose metabolism. It increased the total energy expenditure and net carbohydrate oxidation to the same extent as with the ExFru and resulted in the same total energy and glycogen deficits. However, it markedly enhanced fructose oxidation and decreased fructose and net glycogen storage. Despite this preferential fructose oxidation, the fructose conversion into blood glucose was unchanged, and fat synthesis was still active, as documented by the ongoing incorporation of labeled carbons in VLDL palmitate.

BLOOD lactate, insulin, and triglyceride concentrations were hardly altered compared with in the other 2 conditions.

Our current data support our postulation that exercising after fructose ingestion increases fructose conversion into lactic acid followed by its oxidation in the working muscle. This process has previously been shown with the use of 13C-labeled tracers in simultaneous breakdown and oxidation of unlabeled glycogen, 2) storage of fructose as fat, or 3) incomplete gut absorption of oral fructose. The appearance of 13C carbons in VLDL palmitate unequivocally indicated that hepatic de novo lipogenesis from fructose occurred. However, a quantitative estimate of hepatic fat synthesis was not possible. Therefore, we conclude that hepatic de novo lipogenesis was active after fructose ingestion. However, the total amount of fat synthesis was likely to be small.

When exercise was performed before fructose ingestion, postprandial fructose oxidation tended to be lower, whereas fructose storage was not significantly different from that in sedentary conditions (i.e., without exercise). Cumulative energy expenditure was largely superior to the energy content of the fructose meal, resulting in an energy deficit of 950 kcal. As a consequence, glycogen utilization during exercise was not fully compensated by glycogen storage after fructose ingestion, which resulted in a global glycogen deficit of 146 g over the total 9 h. Labeled fructose carbons were nonetheless recovered as VLDL palmitate, which indicated that de novo lipogenesis remained active and, hence, that fructose carbons were not exclusively channeled toward glycogen storage.

In contrast, exercise performed immediately after fructose ingestion had substantial effects on postprandial fructose metabolism. It increased the total energy expenditure and net carbohydrate oxidation to the same extent as with the ExFru and resulted in the same total energy and glycogen deficits. However, it markedly enhanced fructose oxidation and decreased fructose and net glycogen storage. Despite this preferential fructose oxidation, the fructose conversion into blood glucose was unchanged, and fat synthesis was still active, as documented by the ongoing incorporation of labeled carbons in VLDL palmitate.
exercising subjects who were fed glucose-fructose mixtures (23). In contrast, the data do not confirm our hypothesis that exercising before fructose ingestion would massively divert fructose carbons into glycogen storage. Furthermore, our observations that exercise did not decrease fructose conversion into plasma glucose and did not abolish de novo lipogenesis were in contradiction with our starting hypothesis that de novo lipogenesis would become active only when other pathways were saturated.

It has been reported that exercise can revert hypertriglyceridemia induced by high-fructose or high-carbohydrate weight-maintenance diets (9, 24), and this effect has been proposed as one major mechanism by which exercise may protect against the development of cardiovascular diseases. However, in our current experiments, exercise had no significant effects on plasma triglycerides and did not abolish de novo lipogenesis were in contradiction with our starting hypothesis that de novo lipogenesis would become active only when other pathways were saturated.

Our current study had important limitations. First, the monitoring of breath 13CO2 release provided a reasonable estimate of total fructose oxidation but did not allow for the differentiation of 13CO2 produced from lactate, glucose, and fatty acids. Second, we did not monitor intestinal fructose absorption in this study. Nonetheless, we are confident that fructose malabsorption, if present, was quantitatively small because participants did not get diarrhea or bloating, which are side effects typically elicited by malabsorption of as little as 5–10 g carbohydrate (20). However, it remains possible that fructose malabsorption, 5g passed undetected in some of the participants and, hence, that fructose storage was somewhat overestimated (26). Third, we obtained only qualitative estimates for de novo lipogenesis from fructose because the need to simultaneously assess 13CO2 production and the cost of 13C fructose precluded the use of
highly enriched fructose and the calculation of intrahepatic acetyl-CoA enrichment by mass isotopomer analysis. Fourth, the amount of fructose disposed through systemic lactate was not measured by tracer methods because this would have required a duplication of all tests in each volunteer to separately monitor glucose and lactate kinetics. As a consequence, our data did not allow for a quantitative estimate of the amount of fructose ultimately stored as glycogen and fat or in which organs or tissues this action occurred. Nonetheless, the data provide reliable estimates for fructose oxidation, fructose conversion into plasma glucose, and net glycogen storage and do not support allegations that fructose is mainly converted into fat (27). Nonetheless, fat synthesis from fructose, even if quantitatively minor, may play an important role in the development of fructose-induced hypertriglyceridemia (5).

In conclusion, our results indicate that exercise performed after fructose ingestion markedly enhances fructose oxidation and decreases fructose storage, whereas a similar exercise performed before fructose ingestion does not alter postprandial fructose disposal in healthy individuals. Exercise does not inhibit fructose conversion into plasma glucose and does not abolish fructose conversion into fat. These results suggest that exercise improves sugar-induced hypertriglyceridemia by other mechanisms.

We thank Nathalie Stefanoni and Valentine Rey from the Department of Physiology, University of Lausanne, and Françoise Secretan and Christiane Pellet from the Clinical Research Center for their outstanding assistance.

The authors’ responsibilities were as follows—LE, VL, JC, and RR: analyzed the data and performed the statistical analysis; LE, VL, JC, RR, and A-SM: recruited participants and performed tests; LE, VL, PS, and LT: designed the study; LE and LT: wrote the manuscript; LH: analyzed the isotopic enrichment of plasma lipids; LG and ML: analyzed the isotopic enrichment of plasma glucose; LT: had primary responsibility for the final content of the manuscript; and all authors: read and approved the final manuscript. LT has previously received research support from Nestlé SA and Ajinomoto Co. Inc. for research unrelated to this article. None of the other authors previously received research support from Nestlé. The authors’ responsibilities were as follows—LE, VL, JC, and RR: analyzed the data and performed the statistical analysis; LE, VL, JC, RR, and A-SM: recruited participants and performed tests; LE, VL, PS, and LT: designed the study; LE and LT: wrote the manuscript; LH: analyzed the isotopic enrichment of plasma lipids; LG and ML: analyzed the isotopic enrichment of plasma glucose; LT: had primary responsibility for the final content of the manuscript; and all authors: read and approved the final manuscript. LT has previously received research support from Nestlé SA and Ajinomoto Co. Inc. for research unrelated to this article. None of the other authors previously received research support from Nestlé. All of the other authors reported conflicts of interest related to the study.

REFERENCES